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A B S T R A C T   

Objective: Vitamin D is believed to affect the functionality of the immune system for the prevention of coronavirus 
disease. To investigate the role of this vitamin against the Coronavirus, this study analyzed the serum levels of 
vitamin D, the transcription pattern of inflammatory cytokines, and the frequency of total lymphocytes, TCD4+, 
TCD8+, and NK cells in 50 COVID-19-affected subjects in comparison to 50 healthy participants. 
Materials and methods: This study diagnosed and evaluated 100 patients. Frequency of lymphocytes was deter-
mined using flow cytometry. Cytokine expression levels were measured using Real-Time PCR. Serum levels of 
vitamin D and cytokines levels in cultured cell supernatant were measured by ELISA. 
Results: Patients with COVID-19 exhibited decreased serum levels of vitamin D versus the healthy participants (p 
= 0.0024). The total number of lymphocytes, TCD4+, TCD8+, and NK cells was significantly reduced in patients 
with COVID-19 (p < 0.0001). Considerable upregulation of IL-12, IFN-γ, and TNF-α was seen in COVID-19 pa-
tients compared to the control group, whereas IFN-α was downregulated in COVID-19 patients. ELISA results also 
had increased levels of IL-12, TNF-α, and IFN-γ (p = 0.0014, 0.0012, and p < 0.0001, respectively), and 
decreased level of IFN-α (p = 0.0021) in patients with COVID-19 compared to the control group. 
Conclusion: These findings suggest a probable association among vitamin D concentrations, immune system 
function, and risk of COVID-19 infection. As a result, it is recommended that vitamin D be considered as a 
candidate for handling and controlling COVID-19 because of its ability to target the cytokine storm and its 
antiviral effects.   

1. Introduction 

In late December 2019, a number of pneumonia cases with unde-
termined aetiology were recognized in Wuhan City, China (Bogoch 
et al., 2020). Scientists promptly detected a new variant of coronavirus 
(SARS-CoV-2) among the verified pneumonia-infected subjects that had 
>95% homology with the bat coronavirus (Jiang et al., 2020; Wu et al., 
2020). The most important complications during hospitalization of 
COVID-19 patients were Acute Respiratory Distress Syndrome (ARDS), 

arrhythmia, and shock (Soltani-Zangbar et al., 2021; Wang et al., 2020). 
The binding of human pathogenic coronaviruses with host cell re-
ceptors, angiotensin-converting enzyme 2 (ACE2), expressed via the 
epithelial cells of the nasal mucosa, lung, intestine, kidney, heart, and 
blood vessels is an important contributing factor in the pathogenesis of 
infection (Fan et al., 2021; Soltani-Zangbar et al., 2021; Song et al., 
2018). After receptor binding and modifications in the conformation of 
the spike (S) protein, SARS-CoV-2 releases RNA into the host cell (Chen 
et al., 2020). The cytokine storm has been considered an important 
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contributor to ARDS and it causes mortality for the grave SARS-CoV-2 
infection cases (Vaninov, 2020). The cytokine storm represents an 
excessive systemic inflammatory reaction where pro-inflammatory cy-
tokines including interleukin (IL)-1β, IL-6, IL-12, IL-17, interferon (IFN)- 
γ, tumor necrosis factor-alpha (TNF-α), and chemokines are generated 
fast in large amounts in order to provide protection against SARS-CoV 
infection (Channappanavar and Perlman, 2017; Mahmoodpoor et al., 
2021). T-cells have the most important part in the clearance of viruses 
because CD8+ cytotoxic T cells (CTLs) secrete perforin, granzymes, and 
IFN-γ to eliminate them from the host (Etemadi et al., 2021). Previous 
reports point to a considerable decrease in the count of T-cells CD4+ and 
CD8+ existing in the peripheral blood of SARS-CoV-2-induced subjects. 
However, their status was hyperactivated (Xu et al., 2020b). 

A number of studies have confirmed the role of vitamins in 
decreasing the risk of pneumonia. Vitamin D, a fat-soluble secosteroid, is 
essential to ensuring normal immune functioning against pathogens and 
shielding against autoimmune diseases (Fraser et al., 2020). The three 
main steps in vitamin D metabolism, 25-hydroxylation, 1α-hydroxyl-
ation, and 24-hydroxylation, are completed by cytochrome P450 mixed- 
function oxidases (CYPs) (Bikle, 2014). Following the absorption of 
vitamin D from the diet or its intake into the skin through sunlight, it is 
metabolized in the liver into 25-hydroxyvitamin D [25(OH)D] by 
CYP2R1 (the most important 25-hydroxylase) and CYP27A1 (the only 
mitochondrial 25-hydroxylase) (Bikle, 2014). It remains biologically 
inactive and must be converted in the kidneys by CYP27B1 (main 1α- 
hydroxylase) into its biologically active form, 1,25-dihydroxyvitamin 
D3 [1,25(OH)2D3] (Holick and Disorders, 2017). All genomic actions 
of vitamin D are mediated by the Vitamin D Receptor (VDR). The VDR is 
present in a wide variety of tissues. After binding to 1,25(OH)2D3, the 
VDR heterodimerizes with Retinoid X Receptor (RXR) and is trans-
located to the nucleus where it binds to the VDR Responsive Element 
(VDRE) in target genes to influence gene expression (Holick and Dis-
orders, 2017). An alternative pathway of vitamin D activation by 
CYP11A1 leads to the production of more than 10 metabolites including 
20-hydroxyvitamin D3 [20(OH)D3], 22(OH)D3, 20,23(OH)2D3, 20,22 
(OH)2D3, 17,20,23(OH)3D3, …, which are generated by placenta, ad-
renal glands, and epidermal keratinocytes (Slominski et al., 2012). This 
novel pathway of D3 metabolism was initiated by CYP11A1 and modi-
fied by CYP27B1 activity and it showed the product profiles that were 
tissue- and cell-type specific (Slominski et al., 2014a). It was discovered 
that CYP11A1 hydroxylated the side chain of vitamin D3 without its 
cleavage. CYP11A1 displayed significant flexibility towards substrate 
specificity acting on a range of naturally moving steroid molecules 
(other than cholesterol) including cholesterol precursors, hydrox-
ycholesterols, plant sterols, ergosterol, lumisterol, and vitamins D3 and 
D2 (Slominski et al., 2015b). Products of the novel CYP11A1-initiated 
secosteroidal pathways exhibit anti-proliferative, pro-differentiation, 
anti-fibrotic and anti-cancer activities and anti-inflammatory effects, 
which are comparable to, or greater than, those of 1,25(OH)2D3 (Slo-
minski et al., 2015a). CYP11A1 is expressed in CD4 and CD8 human T 
lymphocytes, B cells, and monocytes. CYP11A1 converts cholesterol into 
pregnenolone, a precursor of all steroids (Slominski et al., 2020d). Pe-
ripheral T-cells produce steroids, particularly pregnenolone. The regu-
lation of local glucocorticoid biosynthesis and CYP11A1 activity could 
be targeted in immune cells or their target organs (Slominski et al., 
2020d). Local production of corticosteroids in the skin, initiated by 
CYP11A1, regulates the protective barrier and skin immune functions 
(Slominski et al., 2021b). 

Nuclear receptors include VDR, Retinoid-related Orphan Receptors 
(ROR)α and γ, and arylhydrocarbon receptor (AhR), with each particular 
compound potentially displaying different affinities (Slominski et al., 
2020a). Recent evidence has revealed that in addition to acting as biased 
agonists to VDR, CYP11A1-derived D3-derivatives can, together with 
lumisterol hydroxyderivatives, act as inverse agonists to ROR α and γ 
(Slominski et al., 2014b) and as agonists to the AhR (Slominski et al., 
2018; Slominski et al., 2021a). 20(OH) D3, 20, 23(OH) 2D3, and 1, 25 

(OH) 2D3 somewhat act as antagonists or inverse agonists to the RORα 
and RORγ receptors. In addition, they inhibit the ROR-responsive 
element (RORE)-mediated activation of a reporter in keratinocytes 
and melanoma cells as well as IL-17 production by immune cells (Slo-
minski et al., 2014b). The top canonical nuclear receptor pathway 
induced by 20, 23(OH) 2D3 was AhR signaling, followed by VDR/RXR. 
20, 23(OH) 2D3 stimulated CYP1A1 and CYP1B1 gene expression, thus 
affecting downstream AhR signaling. A similar stimulation was observed 
for 20(OH)D3 and 17,20,23(OH)3D3 (Slominski et al., 2018). Addi-
tionally, 1, 25(OH) 2D3, 1, 20(OH) 2D3, 25(OH) D3, 20(OH) D3, and 
lumisterol (L3) derivatives such as 20(OH) L3 and 20, 22(OH) 2L3 
exhibited different, yet overlapping, interactions with Liver X receptors 
(LXR). The majority of metabolites functioned as LXRα/β agonists. While 
1,20,25(OH)3D3, 1,25(OH)2D3, 1,20(OH)2D3, and 25(OH)D3 acted as 
inverse agonists to LXRα, they functioned as agonists to LXRβ (Slominski 
et al., 2021a). 

The outcome of published clinical trials confirmed the potential role 
of vitamin D supplementation in fending off acute respiratory infection 
through the modulation of the innate immune response and enhance-
ment of antibody generation post-vaccination (Xu et al., 2020a; Zheng 
et al., 2020). Past epidemiological studies demonstrated the link of 
lower levels of vitamin D to the greater risk of developing ARDS, heart 
failure, and sepsis as well as to the danger of contracting serious COVID- 
19 and even mortality due to COVID-19 (Molloy et al., 2020). One of the 
latest related reviews has confirmed the probable role of vitamin D in 
reducing the risk of contracting COVID-19 infections and death rate 
(Grant et al., 2020). Vitamin D maintains cell junctions, increases 
cellular immunity upon reducing the cytokine storm with effect on IFN-γ 
and TNF-α, and regulates adaptive immunity by the inhibition of Th1 
cell responses (Laviano et al., 2020). Given the wide-ranging differences 
in baseline vitamin D levels in the public and considering that beneficial 
effects are mainly based on serum vitamin D concentrations, measure-
ment of serum vitamin D would provide a more precise insight into 
COVID-19. Accordingly, this study aims to examine 25-hydroxyvitamin 
D [25(OH) D] levels, i.e., the major circulating form of vitamin D, and 
the rate of immune response in patients with COVID-19. 

2. Material & methods 

2.1. Study design 

Fifty Covid-19-infected patients (detected through clinical diagnosis 
and radiologic results) aged over 18 years were selected among the 
patients hospitalized in Intensive Care Unit (ICU). Patients who had 
malnutrition, systemic disease, diarrhea, pregnancy, vascular graft, and 
history of rheumatic fever were excluded from the study. All the patients 
gave their consent to peripheral blood sampling prior to entry to the 
study. The control group included 50 healthy age-matched people who 
did not have COVID-19. Participants' demographics and medical back-
ground were obtained. The current study was approved by the Research 
Ethics Committee of Tabriz University of Medical Science (No: IR. 
TBZMED.REC.1398.1313). 

2.2. Isolation of PBMCs 

All blood samples at approximately 8 mL were obtained from those 
infected by COVID-19 and the subjects in the healthy control group 
under sterile conditions. Of 8 mL, 3 mL was employed for serum prep-
aration and kept at − 70◦ for further vitamin D measurement. Peripheral 
Blood Mononuclear Cells (PBMCs) were collected from heparinized 
blood samples through standard Ficoll (lymphosep) 1.077 g/mL (Bio-
sera, UK) gradient centrifugation. They were then washed twice with 
RPMI 1640 medium (Sigma-Aldrich, Schnelldorf, and Germany). Then, 
5 × 106 of cells were cultured in 5 mL complete medium with 10% Fetal 
Bovine Serum (FBS). After 48 h, the cultured cells and supernatant were 
applied to gene expression analysis and cytokine level evaluation, 
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respectively (Ahmadi et al., 2017). 

2.3. Vitamin D assay 

In line with the manufacturer's protocol by ELISA kits (MyBioSource, 
CA), 25-hydroxyvitamin D [25(OH) D] (ng/mL) level was measured. 

2.4. Flow cytometry analysis 

Following the isolation of PBMCs, the cells were washed twice with 
PBS (Sigma-Aldrich, Germany). In the sample gating, SSC-H and FSC-H 
were comparatively employed to gate all lymphocytes through forward 
and side scatter. They were analyzed even further for their CD4+, CD8+, 
CD56+, and CD16+ expression. 

This study conducted peripheral blood immunophenotyping assay in 
accordance with flow cytometry to identify Natural Killer (NK) cells. For 
PBMC staining, triple-color immunofluorescence analyses of the 
lymphocyte markers were performed through the use of anti-CD3, anti- 
CD16, and anti-CD56 antibodies labelled by fluorescein isothiocyanate 
(FITC) (BD Biosciences), phycoerythrin (PE) (BD Biosciences), and 
allophycocyanin (APC) (BD Biosciences) fluorochromes, respectively. 
The NK population comprised CD3− CD56+ CD16+ cells in the periph-
eral blood. Anti-CD4 and anti-CD8 fluorescent conjugated antibodies 
were used for evaluating CD4+ and CD8+ T lymphocytes after lym-
phocytes gating, respectively. The isotype controls included FITC, PE, 
and APC mouse IgG2a. Flow cytometry was performed using FACSCa-
libur (BD Biosciences, San Jose, CA, USA), and FlowJo software was 
then used for data analysis. 

2.5. Real-time PCR 

Total RNA was derived from cultured PBMCs via RNX-PLUS Solution 
(SinaClon, Tehran, Iran) and it was quantified by spectrophotometric 
measurement (Nano Drop; Agilent Technologies, USA). Next, Revert Aid 
Reverse Transcriptase kit (Thermo Fisher, Waltham, MA, USA) was 
applied to complementary DNA (cDNA) synthesis. Real-time PCR was 
performed to measure the expression levels of IL-12, IFN-α, -IFN-γ, and 
TNF-α. The Corbett research RG-6000 real-time rotary analyzer PCR 
machine (Corbett Research, Bosch Institute) was used. We employed the 
2− ΔΔCT method to measure gene expression in association with the 
β-actin housekeeping control to keep the expression folds of the target 
gene normalized. 

2.6. Enzyme Linked Immunosorbent Assay (ELISA) 

The concentrations of cytokines IL-12, IFN-α, -IFN-γ, and TNF-α (pg/ 
mL) were measured in PBMCs cultured supernatant using ELISA kits 
(Mybiosource, San Diego, USA) based on the manufacturer's in-
structions. For the sake of higher accuracy, the whole samples were 
investigated in duplicate. The absorbance rates were read at 450 nm by a 
micro plate ELISA reader system (BP-800, Biohit, Finland). Softmax 
software of the reader along with standard calibration lines was 
employed to calculate the concentration of the samples. 

2.7. Statistical analysis 

Statistical analysis was carried out by SPSS PC Statistics (version 
24.0; SPSS Inc.). Descriptive statistics for continuous data were 
expressed as the mean ± SD. Unpaired t-test was employed to compar-
atively study the statistical differences in factors between the healthy 
control group and the patients with COVID-19. The GraphPad Prism 
(Ver. 8.00) for Windows (GraphPad Software, La Jolla, CA, USA, www. 
graph pad.com) was utilized for graph drawing. P-values < 0.05 were 
reportedly significant in terms of statistics. 

3. Results 

3.1. Study flow 

A total of 100 participants (50 with COVID-19 and 50 healthy sub-
jects) were evaluated in this study. The mean age of the participants was 
51.8 ± 16.42 and 48.2 ± 15.64 years in patients with COVID-19 and the 
healthy control group, respectively. There was a significant difference in 
systolic blood pressure, fasting blood sugar, triglyceride, LDL- 
cholesterol, and albumin levels between study groups (p < 0.05). 
Table 1 shows the demographic and clinical characteristics of the 
patients. 

3.2. Vitamin D concentration 

COVID-19 patients experienced significantly lower serum levels of 
25(OH) D than the healthy control group [23.10 ± 10.89 vs. 32.06 ±
17.22, p = 0.0024] (Fig. 1). 

3.3. Lymphocytes frequency 

This paper used flow cytometry to determine the level of total lym-
phocytes, T CD4+, T CD8+, and NK cells in patients with COVID-19 and 
controls. Fig. 2A shows the percentage of T CD4+ and T CD8+ escalated 
in patients with COVID-19 in comparison to the control group. The 
frequency of total lymphocytes, T CD4+, T CD8+, and NK cells in pa-
tients with COVID-19 was significantly lower than that in the healthy 
control group (p < 0.0001, p < 0.0001, p = 0.0003, and p < 0.0001, 
respectively) (Fig. 2B). 

3.4. Expression levels of cytokines gene 

The mRNA expression levels of IL-12, IFN-α, -IFN-γ, and TNF-α in the 
PBMCs were measured and compared in the healthy control group and 
patients with COVID-19 using real-time PCR. As shown in Fig. 3, the 
mRNA expression levels of IL-12 (p < 0.0001), TNF-α (p = 0.0028), and 
IFN-γ (p < 0.0001) increased considerably in patients with COVID-19 
compared to healthy controls, whereas IFN-α (p < 0.0001) was 
remarkably reduced in COVID-19 patients (Fig. 3). 

Table 1 
Clinical and biological characteristics of the COVID-19 patients and healthy 
individuals.  

Target (mean ± SD) Healthy control (mean ±
SD) 

COVID-19 
patients 

N = 50 N = 50 

Age 48.2 ± 15.64 51.8 ± 16.42 
(M-F) (24–26) (22–28) 
BMI (kg/m2) 26.54 ± 3.88 27.56 ± 4.92 
Systolic blood pressure (mm 

Hg) 
110.4 ± 12.1 124.7 ± 18.42* 

Diastolic blood pressure (mm 
Hg) 

72.44 ± 8.46 74.32 ± 10.18 

Fasting blood sugar (mg/dL) 105.5 ± 22.92 128.4 ± 37.66* 
Triglyceride (mg/dL) 128.2 ± 36.94 176.3 ± 60.34* 
Cholesterol (mg/dL) 174.3 ± 40.28 188.2 ± 35.22 
Vitamin D3 (ng/mL) 32.06 ± 17.22 23.10 ± 10.89* 
HDL-cholesterol (mg/dL) 48.32 ± 5.02 45.24 ± 6.89 
LDL-cholesterol (mg/dL) 116.8 ± 28.48 137.9 ± 29.12* 
Albumin (g/dL) 3.521 ± 0.2252 3.168 ± 0.2663* 
Creatinine (mg/dL) 1.284 ± 0.729 1.211 ± 0.823 
GFR 76.22 ± 26.34 71.14 ± 20.32 
Clinically positive tests subjects 0 50 

BMI: body mass index; HDL: high density lipoprotein; LDL: low density lipo-
protein; GFR: glomerular filtration rate. Data are presented as mean ± standard 
division. 

* P < 0.05 was considered as statistically significant. 
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3.5. Cytokines levels 

Secretion levels of IL-12, IFN-α, -IFN-γ, and TNF-α in cell supernatant 
were checked out by ELISA. The levels of IL-12 (p = 0.0014), TNF-α (p =
0.0012), and IFN-γ (p < 0.0001) were significantly higher in patients 
with COVID-19 than in healthy controls. It is necessary to note that our 
study determined the decreased concentration levels of IFN-α (p =
0.0021) in COVID-19 patients (Fig. 4). Molecular and cellular changes in 
patients with COVID-19 are shown in Table 2. 

3.6. Correlational analysis of vitamin D and cytokine levels 

A significant negative correlation was found between 25(OH) D 
levels and TNF-α levels (R = − 0.413, p = 0.0028), IL-12 levels (R =
− 0.430, p = 0.0018), and IFN-γ levels (R = − 0.466, p = 0.0006). There 
is a significant positive correlation between 25(OH) D levels and IFN-α 
levels (R = 0.345, p = 0.0139). Table 3 shows correlational analysis of 
vitamin D deficiency and cytokine levels in COVID-19 patients. 

4. Discussion 

One can find the major reasons for COVID-19-induced morbidity and 
mortality in patients with acute respiratory disease syndrome and 
inflammation-related disorders (Teymoori-Rad et al., 2020). According 
to previous findings on COVID-19 patients, vitamin D deficiency is clear 
in patients with acute respiratory tract infections. Vitamin D enjoys 
special properties that reinforce the immune system through the mod-
ulation of both adaptive and innate immune systems as well as cytokines 
and regulation of cell signaling pathways (Laird et al., 2020). Active 
forms of vitamin D including the classical 1,25(OH)2D3 and 25(OH)D3 
and novel CYP11A1-derived hydroxyderivatives including 20(OH)D3 
and 20,23(OH)2D3 stimulate effective anti-inflammatory activities such 
as inhibition of IL-1, IL-6, IL-17, TNFα, and IFNγ production through 
downregulation of NF-κB and inverse agonism to RORγ and induce anti- 
oxidative responses through activation of NRF-2 and p53-dependent 
pathways (Slominski et al., 2020c). A range of vitamin D3-related 
compounds including 7-dehydrocholesterol (7-DHC) and lumisterol 
(L3) hydroxyderivaties display anti-SARS-CoV-2 activities and have the 
ability to reduce the viral load in blood stream (Qayyum et al., 2021). 25 
(OH)L3, 24(OH)L3, and 20(OH)7DHC metabolites inhibited RNA- 
dependent RNA polymerase (RdRP) by 50%–60% (Qayyum et al., 
2021). 1,25(OH) 2D3 downregulated IFN signaling, TNSFF noncanoni-
cal and TRAF-activated NFκβ pathways, downregulated inflammasomes, 
and upregulated IL-4, IL-10, and IL-13 signaling (Slominski et al., 
2020a). Low vitamin D level was found to be linked to the increased 
level of inflammatory cytokines, considerably high risk of pneumonia, 
and viral upper respiratory tract infections (Weir et al., 2020). Vitamin D 

also modulates T-cell immunity, decreases the production of Th1 cells, 
and induces Th2 responses (Bae and Kim, 2020). Therefore, it can sup-
press the progression of inflammation by attenuating the generation of 
inflammatory cytokines and increasing anti-inflammatory cytokines 
(Panfili et al., 2021). SARS-CoV-2 would cause downregulation of ACE2 
expression, leading to exacerbated inflammatory reaction as well as 
cytokine storm and lethal ARDS (Ahn et al., 2020). Remarkably, vitamin 
D upregulates the levels of ACE2 in the lungs and alleviates inflamma-
tory responses through its anti-inflammatory properties (Aygun, 2020). 
Therefore, vitamin D could reduce cytokine storm syndrome in patients 
with severe COVID-19 infection and inhibit multiple organ damages 
(Aygun, 2020). Vitamin D3 and its hydroxyderivatives are advantageous 
to bind the active site of TMPRSS2 to the binding site(s) between ACE2 
and SARS-CoV2-RBD, showing that vitamin D3 and its hydroxyder-
ivatives can serve as TMPRSS2 inhibitor and inhibit ACE2 binding of 
SARS-CoV-2 RBD to prevent SARS-CoV-2 entry (Song et al., 2021). 

This study evaluated serum levels of Vitamin D, frequency of lym-
phocytes, and levels of inflammatory cytokines in patients with COVID- 
19. Our results exhibited that the serum levels of vitamin D were 
significantly reduced in patients with COVID-19 compared to the 
healthy control group. Moreover, the frequency of total lymphocytes, T 
CD4+, T CD8+, and NK cells was reduced in the case of patients with 
COVID-19. Indeed, there was a relationship between vitamin D defi-
ciency and COVID-19. Our results illustrated that the mRNA expression 
and levels of IL-12, IFN-α, TNF-α, and IFN-γ significantly increased in 
patients with COVID-19. It can be suggested that decreased levels of 
vitamin D in these patients led to increased levels of proinflammatory 
cytokines. This can suggest the potential role of vitamin D for use as an 
adjunctive therapy for COVID-19 patients. 

A limited case study in Indonesia targeted 10 COVID-19 patients 
(Pinzon and Pradana, 2020). All patients in this study suffered low 
vitamin D levels. It was found that vitamin D deficiency might serve as a 
risk factor in viral infection (Pinzon and Pradana, 2020). Done in the U. 
S., a retrospective study employed many cases and found that vitamin D 
might be associated with the reduced risks of contracting both COVID- 
19 and mortality (Li et al., 2020). Eleven research findings that had 
investigated 360,972 cases of COVID-19 patients in the form of a meta- 
analysis revealed that 37.7% and 32.2% of the patients suffered vitamin 
D deficiency and vitamin D insufficiency, respectively. Also, patients 
with low levels of vitamin D were susceptible to significantly high risk of 
contracting COVID-19 (Ghasemian et al., 2021). There was only a 5% 
mortality rate for vitamin-D-sufficient COVID-19 patients, while pa-
tients with severe deficiency of vitamin D faced a 50% mortality rate 
following 10-day hospitalization (Carpagnano et al., 2021). The results 
of cross-sectional study in the Asia pacific population demonstrated that 
vitamin D levels inversely correlated with the number of COVID-19 
cases (Yadav et al., 2021). In a cohort study of >190,000 patients 

Fig. 1. The serum levels of Vitamin D. The levels of Vitamin D was evaluated using ELISA technique. p < 0.05 was considered as statistically significant (Healthy 
control group, n = 50, patients with COVID-19, n = 50). 
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Fig. 2. The frequency of total lymphocytes, T CD4+, T CD8+ and NK cells in in patients with COVID-19 and control group. A) At the first cells were gated based on 
the side scatter and forward scatter (SSC-H vs. FSC-H). B) The gated cells were analyzed based on CD4, CD8, CD56 and CD16 expression. p < 0.05 was considered as 
statistically significant (Healthy control group, n = 50, patients with COVID-19, n = 50). 

M.S. Soltani-Zangbar et al.                                                                                                                                                                                                                   



Gene Reports 26 (2022) 101509

6

from the USA, an obvious inverse relationship between circulating 25 
(OH)D levels and SARS-CoV-2 positivity was detected (Kaufman et al., 
2020). Patients who had a circulating level of 25(OH) D < 20 ng/mL had 
a 54% higher positivity rate than those who had a blood level of 30–34 
ng/mL in multivariable analysis (Kaufman et al., 2020). Patients who 
are vitamin D deficient or insufficient, i.e., 25(OH)D 30 ng/mL, could be 
treated with an appropriate amount of vitamin D as soon as it is feasible 
to do so (Slominski et al., 2020b). Those people that are subjected to the 

greater risk of vitamin D deficiency under the current COVID-19 
pandemic must seriously consider taking vitamin D supplements to 
optimize the serum 25-hydroxyvitamin D level (75–125 nmol/L) (Ali, 
2020). 

5. Conclusion 

A possible link among vitamin D concentrations, immune system 

Fig. 2. (continued). 

Fig. 3. The mRNA expression of IL-12, IFN-α, TNF-α, and IFN-γ in patients with COVID-19 and control group. The expression levels of IL-12, IFN-α, TNF-α, and IFN-γ 
were evaluated using quantitative real-time PCR. p < 0.05 was considered as statistically significant (Healthy control group, n = 50, patients with COVID-19, n = 50). 
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function, and risk of COVID-19 infection was observed in this study. 
Vitamin D deficiency was strongly accompanied by the increased risk of 
COVID-19. Given the crucial role of vitamin D in the fight against the 
cytokine storm in COVID-19 patients, its supplementation can be 
considered as adjunctive therapy for COVID-19 patients, and it will 
possibly facilitate boosting the immune system, inhibiting virus spread, 
and attenuating the disease progression into severe stages. Large-scope 
controlled researches are required to prove the impact of vitamin D on 
COVID-19. 
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Table 2 
Molecular and cellular changes in patients with COVID-19 vs healthy 
individuals.  

Target Healthy control 
(Mean ± SD) 

COVID-19 patients 
(Mean ± SD) 

p value 

N = 50 N = 50 

Flow cytometry 
Total lymphocytes 

(/μl) 
1622 ± 530.1 997.4 ± 257.1  <0.0001 

CD4+ T lymphocytes 
(/μl) 

839.0 ± 298.4 480.7 ± 218.2  <0.0001 

CD8+ T lymphocytes 
(/μl) 

420.8 ± 175.5 301.3 ± 143.7  0.0003 

NK cells (/μl) 211.1 ± 134.5 104.8 ± 72.54  <0.0001  

Real-time PCR (fold change) 
IFN-γ 1.003 ± 0.1099 1.559 ± 0.5894  <0.0001 
IFN-α 1.006 ± 0.1033 0.6060 ± 0.3325  <0.0001 
IL-12 1.000 ± 0.1109 1.453 ± 0.6876  <0.0001 
TNF-α 1.000 ± 0.1305 1.205 ± 0.4531  0.0028  

ELISA (cell supernatant) 
IFN-γ (pg/mL) 92.74 ± 31.25 137.5 ± 42.32  <0.0001 
IFN-α (pg/mL) 90.52 ± 34.68 70.48 ± 28.30  0.0021 
IL-12 (pg/mL) 610.0 ± 269.0 807.9 ± 328.0  0.0014 
TNF-α (pg/mL) 388.8 ± 170.4 551.0 ± 297.6  0.0012 

NK Cells: Natural Killer cells, IFN-γ: Interferon Gamma, IFN-α: Interferon alpha, 
IL-12: Interleukin 12, TNF-α: Tumor Necrosis Factor alpha. 

Table 3 
Correlation of vitamin-D3 levels with evaluated cytokines in COVID-19 patients.  

Target Vit-D3 vs. 
TNF-α 

Vit-D3 vs. IL- 
12 

Vit-D3 vs. IFN- 
γ 

Vit-D3 vs. 
IFN-α 

r − 0.4136 − 0.4308 − 0.4669 0.3458 
95% CI − 0.6257 to 

− 0.1446 
− 0.6383 to 
− 0.1650 

− 0.6643 to 
− 0.2086 

0.06624 to 
0.5750 

P (two- 
tailed) 

0.0028 0.0018 0.0006 0.0139  
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